Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 14(12)2022 12 15.
Article in English | MEDLINE | ID: covidwho-2163628

ABSTRACT

In the current global scenario, many COVID-19 survivors present a severe deterioration in physical strength, respiratory function, and quality of life due to persistent symptoms and post-acute consequences of SARS-CoV-2 infection. These alterations are known as post-COVID-19 syndrome for which there is no specific and effective treatment for their management. Currently, therapeutic exercise strategies (ThEx) are effective in many diseases by reducing the appearance of complications and side effects linked to treatment, and are consequently of great relevance. In this study, we review the effect of ThEX in reversing decreased strength, impaired respiratory function, decreased physical fitness, and decreased quality of life (QoL) caused by post-COVID-19 syndrome. A literature search was conducted through the electronic databases, Medline (PubMed), SciELO and Cochrane Library Plus for this structured narrative review for studies published from database retrieval up till 12 December 2022. A total of 433 patients with post-COVID-19 syndrome condition (60% women) were included in the nine studies which met the inclusion/exclusion criteria. Overall, post-COVID-19 syndrome patients who followed a ThEx intervention showed improvements in strength, respiratory function, physical fitness and QoL, with no exercise-derived side effects. Thus, ThEx based on strength, aerobic and respiratory training could be an adjuvant non-pharmacological tool in the modulation of post-COVID-19 syndrome.


Subject(s)
COVID-19 , Humans , Female , Male , COVID-19/therapy , Quality of Life , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Physical Fitness
2.
Vaccines (Basel) ; 10(8)2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-2080493

ABSTRACT

The literature suggests that real-world data on the effectiveness and safety of the BNT162b2 vaccine depend on the characteristics of the vaccinated volunteers. The purpose of this study was to evaluate antibody responses and kinetics, established association with sociodemographic and clinical characteristics, and adverse reactions after complete vaccination with the BNT162b2 vaccine. A single-center prospective case series study was conducted with 112 eligible volunteers who were institutionalized elderly and health care workers with had a negative anti-SARS-CoV-2 IgG test prior to receiving the first dose of vaccine. At least one serological antibody test after each dose of vaccine was performed. Volunteers with a positive SARS-CoV-2 PCR test before vaccination were excluded. A chemiluminescent immunoassay anti-S1 antibody assay performed a serological evaluation. Both vaccine doses elicited positive IgG antibodies 3799.0 ± 2503.0 AU/mL and 8212.0 ± 4731.0 AU/mL after 20 days of the first and second doses of BNT162b2, respectively. Comirnaty® vaccine induced an immune response with antibody production against SARS-CoV-2 in 100% of participants, regardless of age (Spearman rho = -0.10, p-value = 0.312), body mass index (Spearman rho = 0.05, p-value = 0.640), blood group first dose (p-value for Kruskal-Wallis test = 0.093) and second dose (p-value for Kruskal-Wallis test = 0. 268), number of drugs (Spearman rho = -0.07, p-value = 0.490), and number of chronic diseases first dose (p-value for Kruskal-Wallis test = 0.632) and second dose (p-value for Kruskal-Wallis test = 0.510). IgG antibodies to SARS-CoV-2 were intensely elevated after the second administration of the BNT162b2 vaccine. The higher the titer of anti-peptide IgG antibodies generated after the first dose of vaccine, the higher the titer generated by the second dose of vaccine (Spearman rho = 0.86, p-value < 0.001) and the total antibody titer (Spearman rho = 0.93, p-value < 0.001). Furthermore, no serious adverse effects were reported among participants, although mild to moderate adverse effects (local or systemic) were reported after both doses of the BNT162b2 vaccine, being more frequent after the first dose of the vaccine. No participants showed a positive PCR. The BNT162b2 vaccine induces a robust and rapid antibody response regardless of participant characteristics. The second dose might be especially important because of the increased immunogenicity it produces and the possible temporal distancing of the interval between doses. In general, the vaccines were well tolerated.

3.
Pharmaceutics ; 14(5)2022 May 09.
Article in English | MEDLINE | ID: covidwho-1862877

ABSTRACT

Coronavirus 2019 disease (COVID-19) represents one of the largest pandemics the world has faced, and it is producing a global health crisis. To date, the availability of drugs to treat COVID-19 infections remains limited to supportive care although therapeutic options are being explored. Some of them are old strategies for treating infectious diseases. convalescent plasma (CP) therapy has been used successfully in other viral outbreaks in the 20th century. In this study, we systematically evaluated the effect and safety of CP therapy on hospitalized COVID-19 patients. A structured search was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines using Medline (PubMed), SciELO, Cochrane Library Plus, Web of Science, and Scopus. The search included articles published up to January 2022 and was restricted to English- and Spanish-language publications. As such, investigators identified six randomized controlled trials that met the search criteria. The results determined that in hospitalized COVID-19 patients the administration of CP therapy with a volume between 200-500 mL and a single transfusion performed in 1-2 h, compared to the control group, decreased viral load, symptomatology, the period of infection, and mortality, without serious adverse effects. CP did influence clinical outcomes and may be a possible treatment option, although further studies will be necessary.

4.
J Clin Med ; 10(24)2021 Dec 11.
Article in English | MEDLINE | ID: covidwho-1572521

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a multisystem illness caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which can manifest with a multitude of symptoms in the setting of end-organ damage, though it is predominantly respiratory. However, various symptoms may remain after acute SARS-CoV-2 infection, and this condition is referred to as "Long COVID" (LC). Patients with LC may develop multi-organ symptom complex that remains 4-12 weeks after the acute phase of illness, with symptoms intermittently persisting over time. The main symptoms are fatigue, post-exertional malaise, cognitive dysfunction, and limitation of functional capacity. Pediatric patients developed the main symptoms of LC like those described in adults, although there may be variable presentations of LC in children. The underlying mechanisms of LC are not clearly known, although they may involve pathophysiological changes generated by virus persistence, immunological alterations secondary to virus-host interaction, tissue damage of inflammatory origin and hyperactivation of coagulation. Risk factors for developing LC would be female sex, more than five early symptoms, early dyspnea, previous psychiatric disorders, and alterations in immunological, inflammatory and coagulation parameters. There is currently no specific treatment for LC, but it could include pharmacological treatments to treat symptoms, supplements to restore nutritional, metabolic, and gut flora balance, and functional treatments for the most disabling symptoms. In summary, this study aims to show the scientific community the current knowledge of LC.

5.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: covidwho-1438744

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a multisystem disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that primarily causes respiratory symptoms. However, an increasing number of cutaneous manifestations associated with this disease have been reported. The aim of this study is to analyze the scientific literature on cutaneous manifestations associated with SARS-CoV-2 by means of a narrative literature review until June 2021. The search was conducted in the following electronic databases: Medline (PubMed), SciELO, and Cochrane Library Plus. The most common cutaneous manifestations in patients with COVID-19 are vesicular eruptions, petechial/purpuric rashes, acral lesions, liveoid lesions, urticarial rash, and maculopapular-erythematous rash. These manifestations may be the first presenting symptoms of SARS-CoV-2 infection, as is the case with acral lesions, vesicular eruptions, and urticaria. In relation to severity, the presence of liveoid lesions may be associated with a more severe course of the disease. Treatment used for dermatological lesions includes therapy with anticoagulants, corticosteroids, and antihistamines. Knowledge of the dermatologic manifestations associated with SARS-CoV-2 contributes to the diagnosis of COVID-19 in patients with skin lesions associated with respiratory symptoms or in asymptomatic patients. In addition, understanding the dermatologic lesions associated with COVID-19 could be useful to establish a personalized care plan.


Subject(s)
COVID-19/pathology , Skin Diseases/pathology , Skin/pathology , COVID-19/metabolism , Exanthema/pathology , Exanthema/therapy , Exanthema/virology , Humans , SARS-CoV-2/pathogenicity , Skin/virology , Skin Diseases/therapy , Skin Diseases/virology , Skin Physiological Phenomena , Urticaria/pathology , Urticaria/therapy , Urticaria/virology
6.
Front Immunol ; 12: 698672, 2021.
Article in English | MEDLINE | ID: covidwho-1295644

ABSTRACT

The world is currently experiencing the coronavirus disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome-2 (SARS-CoV-2). Its global spread has resulted in millions of confirmed infections and deaths. While the global pandemic continues to grow, the availability of drugs to treat COVID-19 infections remains limited to supportive treatments. Moreover, the current speed of vaccination campaigns in many countries has been slow. Natural substrates with biological immunomodulatory activity, such as glucans, may represent an adjuvant therapeutic agent to treat SARS-CoV-2. AM3, a natural glycophosphopeptical, has previously been shown to effectively slow, with no side effects, the progression of infectious respiratory diseases by regulating effects on innate and adaptive immunity in experimental models. No clinical studies, however, exist on the use of AM3 in SARS-CoV-2 infected patients. This review aims to summarize the beneficial effects of AM3 on respiratory diseases, the inflammatory response, modulation of immune response, and attenuation of muscle. It will also discuss its potential effects as an immune system adjuvant for the treatment of COVID-19 infections and adjuvant for SARS-CoV-2 vaccination.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/diet therapy , Calcium Phosphates/pharmacology , Dietary Supplements , Glycopeptides/pharmacology , Immunomodulation/immunology , SARS-CoV-2/drug effects , COVID-19 Vaccines/immunology , Cytokines/immunology , Humans , SARS-CoV-2/immunology , Vaccination
7.
Int J Environ Res Public Health ; 17(22)2020 11 17.
Article in English | MEDLINE | ID: covidwho-927674

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) is a novel coronavirus not previously recognized in humans until late 2019. On 31 December 2019, a cluster of cases of pneumonia of unspecified etiology was reported to the World Health Organization in China. The availability of adequate SARS-CoV-2 drugs is also limited, and the efficacy and safety of these drugs for COVID-2019 pneumonia patients need to be assessed by further clinical trials. For these reasons, there is a need for other strategies against COVID-19 that are capable of prevention and treatment. Physical exercise has proven to be an effective therapy for most chronic diseases and microbial infections with preventive/therapeutic benefits, considering that exercise involves primary immunological mediators and/or anti-inflammatory properties. This review aimed to provide an insight into how the implementation of a physical exercise program against COVID-19 may be a useful complementary tool for prevention, which can also enhance recovery, improve quality of life, and provide immune protection against SARS-CoV-2 virus infection in the long term. In summary, physical exercise training exerts immunomodulatory effects, controls the viral gateway, modulates inflammation, stimulates nitric oxide synthesis pathways, and establishes control over oxidative stress.


Subject(s)
Coronavirus Infections/prevention & control , Exercise , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , China , Humans , Inflammation , Nitric Oxide , Oxidative Stress , Quality of Life , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL